Zuguang Gao; Khaled Alshehri; John R. Birge
The rapid growth of distributed energy resources (DERs) is one of the most significant changes to electricity systems around the world. Examples of DERs include solar panels, small natural gas-fueled generators, combined heat and power plants, etc. Due to the small supply capacities of these DERs, it is impractical for them to participate directly in the wholesale electricity market. We study in this paper an efficient aggregation model where a profit-maximizing aggregator procures electricity from DERs, and sells them in the wholesale market. The interaction between the aggregator and the DER owners is modeled as a Stackelberg game: the aggregator adopts two-part pricing by announcing a participation fee and a per-unit price of procurement for each DER owner, and the DER owner responds by choosing her payoff-maximizing energy supplies. We show that our proposed model preserves full market efficiency, i.e., the social welfare achieved by the aggregation model is the same as that when DERs participate directly in the wholesale market.